47 research outputs found

    The Photospheric Imprints of Coronal Electric Currents

    Full text link
    Flares and coronal mass ejections are powered by magnetic energy stored in coronal electric currents. Here, we explore the nature of coronal currents in observed and model active region (ARs) by studying manifestations of these currents in photospheric vector magnetograms. We employ Gauss's separation method, recently introduced to the solar physics literature, to partition the photospheric field into three distinct components, each arising from a separate source: (i) currents passing through the photosphere, (ii) currents flowing below it, and (iii) currents flowing above it. We refer to component (iii) as the photospheric imprint of coronal currents. In both AR 10930 and AR 11158, photospheric imprints exhibit large-scale, spatially coherent structures along these regions' central, sheared polarity inversion lines (PILs) that are consistent with coronal currents flowing horizontally above these PILs, similar to recent findings in AR 12673 by Schuck et al. (2022). We find similar photospheric imprints in a simple model of a non-potential AR with known currents. We find that flare-associated changes in photospheric imprints in AR 11158 accord with earlier reports that near-PIL fields become more horizontal, consistent with the "implosion" scenario. We hypothesize that this evolution effectively shortens, in an overall sense, current-carrying coronal fields, leading to decreased inductive energy (DIE) in the coronal field. We further hypothesize that, in the hours prior to flares, parts of the coronal field slowly expand, in a process we deem coronal inflation (CI) -- essentially, the inverse of the implosion process. Both of these hypotheses are testable with non-potential coronal field extrapolations.Comment: 28 pages, 10 figures, to be submitted to ApJ. Addition of co-authors is expecte

    A Comprehensive Method of Estimating Electric Fields from Vector Magnetic Field and Doppler Measurements

    Full text link
    Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic models of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal (PTD) decomposition of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the "{\bf P}TD-{\bf D}oppler-{\bf F}LCT {\bf I}deal" (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the \texttt{FISHPACK} software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (\texttt{ANMHD}) simulations, which have been used in similar tests in the past. We find that the PDFI method has less than 11% error in the total Poynting flux and a 1010% error in the helicity flux rate at a normal viewing angle (θ=0(\theta=0) and less than 2525% and 1010% errors respectively at large viewing angles (θ<60∘\theta<60^\circ). We compare our results with other inversion methods at zero viewing angle, and find that our method's estimates of the fluxes of magnetic energy and helicity are comparable to or more accurate than other methods. We also discuss the limitations of the PDFI method and its uncertainties.Comment: 56 pages, 10 figures, ApJ (in press

    Photospheric Electric Fields and Energy Fluxes in the Eruptive Active Region NOAA 11158

    Full text link
    How much electromagnetic energy crosses the photosphere in evolving solar active regions? With the advent of high-cadence vector magnetic field observations, addressing this fundamental question has become tractable. In this paper, we apply the "PTD-Doppler-FLCT-Ideal" (PDFI) electric field inversion technique of Kazachenko et al. (2014) to a 6-day HMI/SDO vector magnetogram and Doppler velocity sequence, to find the electric field and Poynting flux evolution in active region NOAA 11158, which produced an X2.2 flare early on 2011 February 15. We find photospheric electric fields ranging up to 22 V/cm. The Poynting fluxes range from [−0.6[-0.6 to 2.3]×10102.3]\times10^{10} ergs⋅\cdotcm−2^{-2}s−1^{-1}, mostly positive, with the largest contribution to the energy budget in the range of [109[10^9-1010]10^{10}] ergs⋅\cdotcm−2^{-2}s−1^{-1}. Integrating the instantaneous energy flux over space and time, we find that the total magnetic energy accumulated above the photosphere from the initial emergence to the moment before the X2.2 flare to be E=10.6×1032E=10.6\times10^{32} ergs, which is partitioned as 2.02.0 and 8.6×10328.6\times10^{32} ergs, respectively, between free and potential energies. Those estimates are consistent with estimates from preflare non-linear force-free field (NLFFF) extrapolations and the Minimum Current Corona estimates (MCC), in spite of our very different approach. This study of photospheric electric fields demonstrates the potential of the PDFI approach for estimating Poynting fluxes and opens the door to more quantitative studies of the solar photosphere and more realistic data-driven simulations of coronal magnetic field evolution.Comment: 51 pages, 10 figures, accepted by ApJ on August 11, 201

    Solar Magnetic Tracking. IV. The Death of Magnetic Features

    Full text link
    The removal of magnetic flux from the quiet-sun photosphere is important for maintaining the statistical steady-state of the magnetic field there, for determining the magnetic flux budget of the Sun, and for estimating the rate of energy injected into the upper solar atmosphere. Magnetic feature death is a measurable proxy for the removal of detectable flux. We used the SWAMIS feature tracking code to understand how nearly 20000 detected magnetic features die in an hour-long sequence of Hinode/SOT/NFI magnetograms of a region of quiet Sun. Of the feature deaths that remove visible magnetic flux from the photosphere, the vast majority do so by a process that merely disperses the previously-detected flux so that it is too small and too weak to be detected. The behavior of the ensemble average of these dispersals is not consistent with a model of simple planar diffusion, suggesting that the dispersal is constrained by the evolving photospheric velocity field. We introduce the concept of the partial lifetime of magnetic features, and show that the partial lifetime due to Cancellation of magnetic flux, 22 h, is 3 times slower than previous measurements of the flux turnover time. This indicates that prior feature-based estimates of the flux replacement time may be too short, in contrast with the tendency for this quantity to decrease as resolution and instrumentation have improved. This suggests that dispersal of flux to smaller scales is more important for the replacement of magnetic fields in the quiet Sun than observed bipolar cancellation. We conclude that processes on spatial scales smaller than those visible to Hinode dominate the processes of flux emergence and cancellation, and therefore also the quantity of magnetic flux that threads the photosphere.Comment: Accepted by Ap
    corecore